Notch-mediated CBF-1/RBP-J{kappa}-dependent regulation of human vascular smooth muscle cell phenotype in vitro.
نویسندگان
چکیده
Vascular smooth muscle cell (VSMC) phenotypic modulation is a key factor in vascular pathology. We have investigated the role of Notch receptor signaling in controlling human vascular smooth muscle cell (hVSMC) differentiation in vitro and established a role for cyclic strain-induced changes in Notch signaling in promoting this phenotypic response. The expression of alpha-actin, calponin, myosin, and smoothelin was examined by performing immunocytochemistry, Western blot analysis, and quantitative real-time PCR in hVSMCs cultured under static conditions after forced overexpression of constitutively active Notch 1 and 3 receptors, inhibition of endogenous Cp-binding factor 1 (CBF-1)/recombination signal sequence-binding protein-Jkappa (RBP-Jkappa) signaling, and exposure to cyclic strain using a Flexercell Tension Plus unit. Overexpression of constitutively active Notch intracellular (IC) receptors (Notch 1 IC and Notch 3 IC) resulted in a significant downregulation of alpha-actin, calponin, myosin, and smoothelin expression, an effect that was significantly attenuated after inhibition of Notch-mediated, CBF-1/RBP-Jkappa-dependent signaling by coexpression of RPMS-1 (Epstein-Barr virus-encoded gene product) and selective knockdown of basic helix-loop-helix factors [hairy enhancer of split (HES) gene and Hes-related transcription (Hrt) factors Hrt-1, Hrt-2, and Hrt-3] using targeted small interfering RNA. Cells cultured under conditions of defined equibiaxial cyclic strain (10% strain, 60 cycles/min, 24 h) exhibited a significant reduction in Notch 1 IC and Notch 3 IC expression concomitant with a significant increase in VSMC differentiation marker expression. Moreover, this cyclic strain-induced increase was further enhanced after inhibition of CBF-1/RBP-Jkappa-dependent signaling with RPMS-1. These findings suggest that Notch promotes changes in hVSMC phenotype via activation of CBF-1/RBP-Jkappa-dependent pathways in vitro and contributes to the phenotypic response of VSMCs to cyclic strain-induced changes in VSMC differentiation.
منابع مشابه
Notch 1 and 3 receptors modulate vascular smooth muscle cell growth , apoptosis and migration via a CBF - 1 / RBP - Jk dependent pathway
Vascular smooth muscle cell (SMC) fate decisions (cell growth, migration, and apoptosis) are fundamental features in the pathogenesis of vascular disease. We investigated the role of Notch 1 and 3 receptor signaling in controlling adult SMC fate in vitro by establishing that hairy enhancer of split (hes-1 and -5) and related hrt’s (hrt-1, -2, and -3) are direct downstream target genes of Notch ...
متن کاملNotch and vascular smooth muscle cell phenotype.
The Notch signaling pathway is critical for cell fate determination during embryonic development, including many aspects of vascular development. An emerging paradigm suggests that the Notch gene regulatory network is often recapitulated in the context of phenotypic modulation of vascular smooth muscle cells (VSMC), vascular remodeling, and repair in adult vascular disease following injury. Not...
متن کاملSonic Hedgehog induces Notch target gene expression in vascular smooth muscle cells via VEGF-A.
OBJECTIVE Notch, VEGF, and components of the Hedgehog (Hh) signaling pathway have been implicated in vascular morphogenesis. The role of Notch in mediating hedgehog control of adult vascular smooth muscle cell (SMC) growth and survival remains unexplored. METHODS AND RESULTS In cultured SMCs, activation of Hh signaling with recombinant rShh (3.5 mug/mL) or plasmid encoded Shh increased Ptc1 e...
متن کاملAlcohol inhibits smooth muscle cell proliferation via regulation of the Notch signaling pathway.
OBJECTIVE To determine the role of Notch signaling in mediating alcohol's inhibition of smooth muscle cell (SMC) proliferation. METHODS AND RESULTS Treatment of human coronary artery SMCs with ethanol (EtOH) decreased Notch 1 mRNA and Notch 1 intracellular domain protein levels, in the absence of any effect on Notch 3. EtOH treatment also decreased C-promoter binding factor-1 (CBF-1)/recombin...
متن کاملHairy-related transcription factors inhibit Notch-induced smooth muscle alpha-actin expression by interfering with Notch intracellular domain/CBF-1 complex interaction with the CBF-1-binding site.
Notch signaling regulates smooth muscle cell phenotype and is critical for vascular development. One Notch target is smooth muscle alpha-actin (SMA), a differentiated smooth muscle cell marker. The Notch intracellular domain (NotchICD) forms a complex with CBF-1 (C-promoter-binding factor-1) and directly induces SMA expression. Using primary human smooth muscle cells, we show that expression of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 289 5 شماره
صفحات -
تاریخ انتشار 2005